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[1] We extend an elastodynamic finite element method to incorporate off-fault plastic
yielding into a dynamic earthquake rupture model. We simulate rupture for models of
faults with a kink (a sharp change in fault strike), examining how off-fault plastic yielding
affects rupture propagation, seismic radiation, and near-fault strain distribution. We
find that high-frequency radiation from a kink can be reduced by strong plastic yielding
near the kink. The reduction is significant above several Hz. When rupture propagates
around the kink onto a less favorably stressed fault segment, plastic strain tends to localize
into bands and lobes. Off-fault plastic yielding also significantly reduces heterogeneity
of residual stresses around the kink following a dynamic event. The calculated plastic
strain distribution around the kink and the radiated pulse from the kink are nearly grid
independent over the range of element size for which computations are feasible. We
also find that plastic strain can sometimes localize spontaneously during rupture along a
planar fault, in the absence of a discrete stress concentrator like the kink. In that case, a
non-dimensional parameter T, characterizing the initial proximity of off-fault material
to its yield strength, determines whether plastic strain localizes into discrete bands or is
smoothly distributed, with a large value of T promoting localization. However, in the cases
of spontaneous localization, the details of the shear banding change with numerical
element size, indicating that the final plastic strain distribution is influenced by
interactions occurring at the shortest numerically resolvable scales. Off-fault plastic
yielding also makes an important contribution to the cohesive zone at the advancing edge
of the rupture.

Citation: Duan, B., and S. M. Day (2008), Inelastic strain distribution and seismic radiation from rupture of a fault kink, J. Geophys.

Res., 113, B12311, doi:10.1029/2008JB005847.

1. Introduction

[2] It has long been recognized that an abrupt change in
earthquake rupture speed results in high-frequency radiation
[Madariaga, 1977]. Observations and theoretical studies
have shown that a fault kink can cause abrupt changes in
rupture speed [e.g., King and Nabelek, 1985; Bouchon and
Streiff, 1997; Aochi et al., 2000; Duan and Oglesby, 2005;
Ely et al., 2008]. More recently, an analysis of seismic
radiation from a kink on an antiplane fault performed by
Adda-Bedia and Madariaga [2008] shows that rupture
through a fault kink radiates a step function in particle
velocities. A velocity step entails strong high-frequency
radiation to the far field, with displacement spectrum
proportional to f�2 (f is frequency). This analysis of the
kink contribution to seismic radiation assumes, of course,
that deformation in the medium surrounding the fault is
purely elastic.

[3] Detailed geological measurements on exhumed fault
zones, such as the Punchbowl fault in southern California,
have shown that the core of a fault, i.e., the zone with a
thickness of cm to tens of cm that accommodates most of
slip, is surrounded by a zone of cataclastic material with a
thickness of few meters and a broader damage zone that is
several hundred meter wide [e.g., Chester and Chester,
1998; Ben-Zion and Sammis, 2003; Chester et al., 2004].
Trapped-wave studies [e.g., Li et al., 1994; Ben-Zion et al.,
2003] reveal a low-velocity zone with a width of tens to
hundreds of meters around the active faults in California
and Turkey. A new observation of fault guided PSV-waves
at SAFOD (San Andreas Fault Observatory at Depth)
supports the hypothesis that the low-velocity fault zones
can extend deep into the seismogenic crust [Ellsworth and
Malin, 2006]. These observations suggest that slip during an
earthquake rupture is localized on the core of a fault, and is
accompanied by inelastic deformation distributed in a zone
surrounding the core.
[4] Theoretical analyses on the stress field near the tip of

a steadily propagating rupture suggest that stresses elasti-
cally predicted near the rupture front can be large enough to
cause failure of off-fault material, based on a Coulomb
failure criterion, particularly for propagation speed near the
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theoretical limiting speed for a sharp crack (e.g., the
Rayleigh speed for mode II rupture) [Poliakov et al.,
2002; Rice et al., 2005]. These studies indicate the likely
importance of off-fault inelastic response for models of
rupture behavior and ground motion excitation. Andrews
[2005] has modeled this inelastic response on planar faults,
using Mohr-Coulomb elastoplasticity. He has shown that, in
such models, energy loss off the fault is proportional to
propagation length (in 2D), and is much larger than energy
loss on the fault. Templeton and Rice [2008] have used the
similar Drucker-Prager elastoplastic model to study the
extent and distribution of off-fault plasticity during seismic
rupture on a planar fault. Numerical simulations by Andrews
et al. [2007] have shown that nonlinear material response
may significantly affect model predictions of near-fault
ground motion.
[5] In this study, we model rupture on both planar and

kinked faults, using a simple (slip-weakening) friction law,
in 2D (mode II, in-plane motion). We retain the approach by
Andrews [2005], treating off-fault material as a Mohr-
Coulomb elastoplastic solid, with post-yielding behavior
governed by a non-associative flow rule. Through compar-
isons with elastodynamic simulations for the same geome-
tries, we examine effects of yielding on rupture propagation,
strain distribution, and seismic radiation.

2. Method

[6] We modify an elastodynamic finite element method
code EQdyna [Duan and Oglesby, 2006] to allow the off-
fault material to yield when the stress state reaches a
Coulomb yield criterion [Scholz, 2002; Andrews, 2005].

2.1. EQdyna: An Explicit Finite Element Method
(FEM) for Elastoplastic Dynamic Analysis

[7] To perform elastoplastic dynamic analysis, the ele-
ment stress cannot be calculated from displacement, as it
can in elastodynamic analysis. Rather, the element stress
must be updated from the previous time step value by
integrating the stress rate. The stress rate can be computed
from the element nodal velocity. The general structure of
EQdyna [Duan and Oglesby, 2006] does not require change.
The major modifications involve only the element stress
calculation and implementation of the stiffness-proportional
Rayleigh damping at the element level.
[8] From the element point of view, the internal force for

elastic analysis can be computed by [e.g., Hughes, 2000]

f e ¼ kede ¼ 4jBTDBde; ð1Þ

where f e, de, ke are the nodal force vector, the displacement
vector, and the element stiffness matrix, respectively, j is the
Jacobin determinant, and B and D are, respectively, the
strain-displacement matrix and the constitutive matrix with
standard definition in the FEM literature [e.g., Hughes,
2000]. Equation (1) is based upon one-point Gaussian
Quadrature, which (in 2D) accounts for the pre-factor of 4
appearing in (1). In the code, one does not have to calculate
the element stiffness matrix. Rather, the multiplication on
the right hand of equation (1) can be performed from right

to left. In this point of view, the element strain and stress
vectors at the integration point are

ee ¼ Bde

se ¼ Dee
; ð2Þ

where, the superscript e denotes ‘‘element’’, indicating the
element point of view of the quantities. In elastic analysis,
one does not need to explicitly calculate the element strain
and stress if they are not required for analysis. However, the
element stress is required in elastoplastic analysis to assess
the Coulomb yield criterion. We remark that the element
stress is calculated at the Gaussian quadrature point (the
center of the element), while the internal force is evaluated
at the element nodes.
[9] For elastoplastic dynamic analyses, we require the

elastic stress increments (which may be subsequently mod-
ified by the yield condition) at each time step. One can
evaluate them from element strain rate and stress rate at the
integration point, using the time derivatives of (2),

_ee ¼ Bve

_se ¼ D _ee
; ð3Þ

where overdot represents the time derivative, and ve is the
velocity vector. Then the element stress at the time step n + 1
can be updated from the value of the previous time step
n through time integration, approximated by

se
nþ1 ¼ se

n þ _seDt; ð4Þ

where Dt is the dynamic simulation time step. This is the
trial element stress and may be altered if plastic yielding
occurs. In this update scheme, velocity, strain rate, and
stress rate are evaluated at the time (n + 1/2) Dt. Then the
internal nodal force vector (at the element level) at the time
step n + 1 can be calculated as

f enþ1 ¼ 4jBTse
nþ1: ð5Þ

[10] In addition to the above modification in the internal
force calculation, the implementation of the stiffness-
proportional Rayleigh damping [e.g., Hughes, 2000] also
needs to be revised. In elastic analyses, one can easily
implement the damping by adding a correction vector qve to
the displacement vector de before calculating the internal
force [Hughes, 2000; Duan and Oglesby, 2006]. Here, q is
the damping coefficient. In elastoplastic analyses, this
damping force needs to be calculated separately from the
internal force. Using the above notation, one can calculate
the element damping force vector at the time step n + 1 from
the stress rate at the time (n + 1/2) Dt as

f
damp
nþ1 ¼ 4jqBT _se: ð6Þ

[11] In the new version of the code EQdyna, we still use
the traction-at-split-node (TSN) treatment for the fault
boundary [Andrews, 1999]. In this method, a given fault
plane node is split into two halves, which interact through
traction acting on the interface between them. The calculated
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fault-plane nodal tractions (shear and normal components)
represent averages over adjacent element edges, that is, each
is a nodal force divided by an effective element-edge area;
the fault boundary conditions are enforced for these aver-
aged quantities. We adopt the formulation given by Day et
al. [2005] in the new version, which provides a consistent
treatment for fault behavior (at a given pair of split nodes) at
all times, including pre-rupture, rupture initiation, arrest of
sliding, and possible reactivation and arrest of sliding. In
this work, rupture is artificially initiated from the uniform
stress state by prescribing stress drops on the fault behind a
rupture front that propagates at a fixed speed (2000 m/s,
which is two thirds of the shear wave speed in the models of
this study). This artificial initiation is enforced within a
nucleation zone with half length of L0. Beyond this zone,
rupture propagates spontaneously. This initiation scheme is
similar to that used by Andrews [2005] for similar calcu-
lations with nonelastic off-fault response.

2.2. Off-Fault Elastoplastic Material Behavior

[12] We incorporate off-fault plastic yielding as an approx-
imate continuum representation of the brittle damage mech-
anisms that dominate nonlinear deformation in the upper
crust. The Mohr-Coulomb yield criterion that we use is
pressure-sensitive, postulating that yield in a body occurs on
a plane when the normal (sn, positive in tension in this
study) and shear (t) stresses reach a critical combination.
The criterion requires that the pair (sn, t) resolved onto any
plane satisfy

tj j � c� sn tanfð Þ � 0; ð7Þ

where c is cohesion and f is the internal friction angle. In
2D plane strain calculations, we assume that the maximum
and minimum principal stress directions are in the x-y plane.
To simplify calculations, one can express the yield criterion
in terms of the maximum shear stress over all orientations at
a point, tmax, and the mean stress, sm, both of which can be
calculated from relevant stress components sxy, sxx, syy. As
shown by the Mohr circle construction in Figure 1, for given
tmax and sm, the left-hand side of (7) is maximum at stress
state Y, at which (sn, t) are given by

sm þ tmax sinf; tmax cosfð Þ; ð8aÞ

where,

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
xy þ sxx � syy

� �
=2

� �2q
; ð8bÞ

and

sm ¼ 1

2
sxx þ syy

� �
: ð8cÞ

[13] Substituting (8) into (7), one obtains an alternative
expression for the yield condition,

tmax � c cosf� sm sinfð Þ � 0: ð9Þ

and we can write (9) as

tmax � tCoulomb ð10Þ

where we define

tCoulomb ¼ c cosf� sm sinf: ð11Þ

[14] The plastic flow rule in this work is similar to that
used by Andrews [2005]. If the criterion (10) is violated,
stresses are adjusted to the yield line with two constraints:
(1) there is no change in mean compressive stress sm;
(2) the shear stress components sxy and (sxx � syy)/2 are
reduced by a common factor. The increment of the
plastic strain tensor deij

p can be calculated from the adjust-
ment to each stress component d sij and shear modulus G by
deij

p = dsij/G. The magnitude of plastic strain (permitting no
plastic dilation) at a time can be calculated by

ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
epxx � epyyð Þ=2½ 	2þ epxyð Þ2

q
: ð12Þ

[15] In implementation, we first use the stress compo-
nents estimated from equation (4), that is, using elastic
stress increments, to assess whether the criterion (10) is
violated at the current time step. If it is not violated, the
stress from equation (4) is directly used to calculate the
internal force. If it is violated, we perform the adjustment in
the stress deviator domain, similar to that used by Andrews
[2005]. Applying the factor of tcoulomb/tmax to each stress
deviator component will adjust the stress state exactly onto
the yield line at the current time step n + 1. Then the stress
components after adjustment are recovered from the mean
stress and the adjusted stress deviators, and the plastic strain
increments are calculated. In this case, the adjusted element
stress, rather than that in equation (4), is used to calculate
the internal force. As usual in models of materials in which
the configuration of the yield surface (i.e., the function of the
stress components that defines the elastic limit) is pressure-
dependent, this flow rule is non-associative, that is, plastic
strain increments are not orthogonal to the yield surface
(non-associated flow rules are often appropriate for mate-
rials such as rocks [e.g., Davis and Selvadurai, 2002]), and
non-dilatant.

2.3. Two Numerical Regularization Schemes

[16] The elastoplastic analysis is nonlinear. Since high-
frequency components of the solution do not simply super-
impose linearly on low-frequency components, the inevitable
numerical inaccuracies at wavelengths near the resolution
limit of the mesh, if not controlled, can potentially contam-
inate the solution over all space-time scales. Therefore some

Figure 1. Mohr-Coulomb yield criterion. Y is a point on
the circle.
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form of numerical regularization is usually necessary to
suppress solution components with spatial scale near that
resolution limit. We apply two schemes to regularize
calculations in the code: one is stiffness-proportional Ray-
leigh damping; the other is Maxwellian viscoplasticity
(time-dependent relaxation of the stress adjustment). The
former introduces a Q (seismic quality factor, which charac-
terizes the rate of decay of seismic waves) that is inversely
proportional to frequency, and therefore selectively damps
wavelengths (l) near the resolution limit of the numerical
mesh. The damping parameter q can be specified through a
non-dimensional parameter b, such that q = bDt, or
equivalently,

q ¼ baDx=vp: ð13Þ

where Dx is the minimum element dimension, a is the
Courant-Friedrich-Lewy (CFL) number and Vp is the P wave
velocity. Then holding b fixed while the mesh is refined (at
fixed CFL number) has the effect of shifting the absorption
band such that Q is unchanged as a function of l/Dx.
Alternatively, one can hold q itself fixed to keep the
absorption band invariant as a function of l.
[17] The second scheme, viscoplasticity, was used by

Andrews [2005] to regularize elastoplastic rupture simula-
tions. In this scheme, the abrupt relaxation of the trial stress
(4) is replaced by a smoothed relaxation with some expo-
nential decay time Tv. That is, the stress adjustment factor
tcoulomb/tmax is replaced by {1 � (1 � tcoulomb/tmax)[1 �
exp (�Dt/Tv)]}. We remark that a smaller Tv results in faster
relaxation of the trial stress to the yield surface and thus
causes stronger off-fault plastic yielding that in turn leads to
slower rupture propagation.
[18] Both numerical parameters b and Tv have the

intended effect of removing poorly-resolved short-wave-

length features from the solution, and ideally we would like
the solution to be relatively insensitive to their precise
values. Values of b of order 0.1 have been found effective
in reducing short-wavelength noise in elastodyanamic rup-
ture simulations [Day et al., 2005; Duan and Oglesby, 2006,
2007; Dalguer and Day, 2007]. Values of Tv of order Dx/Vs

(with Vs the S wave speed) were successfully used by
Andrews [2005] to reduce short-wavelength noise in elasto-
plastic rupture simulations.

2.4. Code Verification: Revisiting the Model
by Andrews

[19] To verify our numerical implementation, we run a
simulation for the same 2D (inplane) model studied by
Andrews [2005]. As in that study, the initial stress field is
uniform, friction on a planar fault is governed by a time-
weakening law with a critical time of Tc = 0.0035 s, and the
simulation uses viscoplasticity regularization, with a value
of Tv = 0.00067 s. Model parameters are summarized in
Table 1, and we refer to Andrews [2005] for specifics of the
time-weakening law, which we use only for this verification
test.
[20] Figure 2 shows time histories of stresses at x = 1 km

and x = 2 km from the initiation point, and Figure 3 shows
slip velocity time histories at those points. For comparison,
these Figures 2 and 3 also show the corresponding results
from Andrews [2005]. The amplitude, timing, and duration
of these time histories match those of Andrews with good
precision (timing differences less than 0.2%, peak amplitude
differences less than 7%). The spatial distribution of the
late-time (0.785 s) plastic strain magnitude (equation (12))
is also nearly identical between the two solutions, as shown
in Figure 4. We also note that viscoplastic regularization
proved unnecessary for obtaining a stable solution in this

Table 1. Andrews [2005]’s Model Parameters

sxx
0 syy

0 sxy
0 tan f c r Vp Vs ms md Tv

�50 MPa �50 MPa 10 MPa 0.75 0 MPa 2700 kg/m3 5196 m/s 3000 m/s 0.5 0.0 0.0067 s

Figure 2. Comparison of time histories of stresses at (left) x = 1 km and (right) x = 2 km on the model
by Andrews [2005]. sxy and syy are continuous across the fault, while sxx in adjacent elements of the fault
shows extensional on one side (y < 0, sxx

�) of the fault and compressive on the other side (y > 0, sxx
+).

Time differences are less than 0.2%, and peak amplitude differences are less than 7% between our results
and those of Andrews [2005].
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particular problem by our method. This is clear from the
comparison of the above results with those from a simula-
tion with Tv = 0 s, also shown in Figures 2–4. For this
model, then, Tv in the 0–0.00067 s range has a very small
effect on rupture velocity (Tv of 0.00067 producing about a
0.7% advance of rupture time relative to the inviscid case)
and no visible effect on plastic strain distribution. The result
from the above model of Tv having little effect on rupture
velocity and plastic strain distribution is not a general
finding, however, as we discuss later.

3. Dynamics of Faults With a Kink
With Off-Fault Plastic Yielding

[21] We examine the effects of off-fault yielding on the
rupture features and seismic radiation associated with a fault

kink. Our model is a simple 2D strike-slip fault with a
change in strike. We first explore one such kinked fault
model in detail and then examine several variations of the
model.

3.1. Results for a Kink Model

3.1.1. Model
[22] Figure 5 shows a 2D right-lateral strike-slip fault

consisting of two straight segments. The left segment
occupies the x axis, and there is a change of 10� in the
strike at the intersection point with the right segment, which
is at the coordinates x = 10 km and y = 0 km. For this type
of sharp kink, there is a singularity in stress at the kink in
analytical solutions [e.g., Tada and Yamashita, 1997]. In our
numerical treatment, as done in the study by Duan and
Oglesby [2005], we define a kink element at the intersection.

Figure 3. Comparison of time histories of slip velocity at (left) x = 1 km and (right) x = 2 km on the
model by Andrews [2005]. Time differences are less than 0.2%, and peak amplitude differences are less
than 7% between our results and those of Andrews [2005].

Figure 4. Comparison of magnitude of plastic strain at time 0.785 s on the model by Andrews [2005].
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The left end of the element belongs to the left segment of
the fault, and the right end of the element belongs to the
right segment of the fault, in terms of their fault normal and
shear directions. By this treatment, the singularity at the
kink is smeared out over the kink element. We consider a
uniform pre-stress field, with sxx = syy, so that the left
segment occupies a plane of maximum shear stress sxy and
the right segment of the fault is therefore less favorable for
rupture propagation compared with the left segment. The
rupture starts at x = 7 km, within a nucleation patch with a
half-length of 330 m. We use the linear slip-weakening
friction law in which the static coefficient of friction ms drops
linearly to the dynamic coefficient md over a critical slip
distance D0. Material properties, frictional parameters, pre-
stress values, and numerical regularization parameters of the
model are listed in Table 2.
[23] We examine velocity time histories at stations located

at six azimuths with respect to the kink, on each of 7
concentric circles at radial distances r of, respectively, 0.1,
0.2, 0.3, 0.5, 1, 1.5, and 2 km. The six stations with r = 1 km
are shown in Figure 5. The calculations use quadrilateral
elements along and near the fault, and we denote this near-
fault element length by Dx. The element size then increases
gradually away from the fault (to improve the computational

efficiency), and the boundaries of the model are far enough
away to prevent boundary reflections from contaminating
the space-time region that we will examine.
[24] To provide a reference model to aid in the identifi-

cation of plastic yielding effects, we also perform a rupture
simulation for the same model, but with linearly elastic
off-fault response. The only change in the latter calcula-
tion relative to the former (elastoplastic) case is setting
the cohesion c in Table 2 to be a very high value (e.g.,
1030 MPa) to suppress plastic yielding in the model. As an
aid to isolating the pulse radiated from the kink in these two
models, we also run elastoplastic and elastic simulations on
a planar fault model, in which the fault is along y = 0 km,
without a change in strike. Most simulations are performed
with Dx = 5 m, with the damping parameter b as shown in
Table 2. We also run several simulations with Dx = 2.5 m to
examine convergence of the solution. In those cases, we
hold damping q fixed (requiring an increase to 0.2 of the
dimensionless parameter b).
3.1.2. Rupture Dynamics of the Fault With a Kink
[25] Figure 6 shows rupture time versus distance along

the fault strike from the above four simulations. Rupture
time is defined as the moment at which the shear stress
reaches the yield stress level at a point on the fault. In the

Figure 5. Geometry of a 2D right-lateral strike-slip fault with a kink. Six concentric stations 1 km away
from the kink are labeled by their orientations relative to the kink.

Table 2. Material and Computational Parameters for the Elastoplastic Calculation in Section 3.1

sxx
0 syy

0 sxy
0 tan f c D0 r Vp Vs ms md Tv a b

�100 MPa �100 MPa 45 MPa 0.75 0 MPa 0.15 m 2700 kg/m3 5196 m/s 3000 m/s 0.6 0.3 0.0017 s 0.3 0.1
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reference simulation–straight-fault, elastodynamic off-fault
behavior (light dashed curve)–rupture rapidly accelerates to
within 1% of the Rayleigh velocity, then undergoes a
supershear transition (by the daughter-crack mechanism of
Andrews [1976]) at a propagation distance of just under 5 km.
[26] We examine the effects of introducing yielding and a

fault bend to the reference case, first separately and then
together.
[27] 1. When yielding is permitted in the straight-fault

model (light solid curve), its effect on rupture propagation is
modest: rupture acceleration is reduced slightly (less than
4% relative to the subshear portion of the elastodynamic
case), and the supershear transition is suppressed (at least
over the 7 km of propagation distance computed here).
[28] 2. When a fault kink, with a change of 10� in strike,

is added in the elastodynamic case, it causes no perceptible
change in rupture speed relative to the unkinked elastody-
namic case (i.e., there is no obvious change in slope of the
heavy dashed curve at the kink), but it does suppress the
supershear transition (within the available 7 km rupture
length).
[29] 3. Finally, when both the 10� kink and off-fault

yielding are introduced (heavy solid curve), the rupture
speed is significantly reduced upon passage through the
fault kink. Furthermore, while there is some subsequent
acceleration of rupture, its velocity stays at a low level
throughout the entire right segment. The reduction in the
rupture speed at the fault kink and the slow rupture speed on
the right segment are associated with significant off-fault
plastic deformation near the kink and along the right

segment, as illustrated by the plastic strain magnitude in
Figure 7a. Andrews [2005] proposed that the off-fault
plastic work be viewed as effectively adding an additional
component to the fracture energy, over and above the work
of slip weakening. That viewpoint is consistent with our
finding of reduced rupture velocities in the cases with
plastic yielding.
3.1.3. Distribution of Off-Fault Plastic Strain
[30] The plastic strain distribution shown in Figure 7a

indicates that there is significant strain localization associ-
ated with the fault kink, principally on the side of the fault
that is associated with extension in the exx component of
strain at the advancing rupture front (i.e., the lower, or –y,
side in Figure 7a). One long, narrow band of high plastic
strain originates from the kink and extends more than 2 km
in the SEE direction, making an angle of about 17� with
respect to the x axis. Development of this plastic strain band
in our continuum model is suggestive of the development or
mobilization of one or more secondary faults during the
dynamic event, helping to accommodate flow around the
sharp (10�) change in the strike of the main fault. Other
localized plastic strain features includes (1) a strong, large
strain lobe extending below the kink; (2) a strong but small
strain lobe occurring to the left of the kink; (3) a weak,
small strain lobe extending above the kink; and (4) a short-
strain band occurring to the right of the kink.
[31] Localized features like the above pose considerable

computational challenge. The spatial scale of the strain
concentrations may ultimately be limited only by the grid
spacing, rendering the solution inherently mesh-dependent.

Figure 6. Rupture times along a kinked fault and a planar fault with off-fault elastic and elastoplastic
responses. Off-fault plastic yielding significantly decelerates rupture propagation at the fault kink.
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We see some evidence of this effect when we compare
solutions done with different grid spacings Dx, despite the
measures taken to regularize the problem. Figure 7b shows
the plastic strain distribution for kinked-fault problem with
Dx reduced by a factor of 2 (2.5 m, versus 5 m for the case
shown in Figure 7a). The long, strong shear band becomes
sharper and the area without plastic strain surrounding it
becomes larger when the numerical element size is reduced.
On the other hand, the number, location and general shape
of the plastic strain bands and lobes do not change. Further-
more, we show later that the radiated wavefields are essen-
tially indistinguishable between the 5 m and 2.5 m cases.
In the practical sense, then, the solution appears to be
essentially grid-size independent, despite the plastic strain
localization associated with the fault kink.
[32] The change in fault strike also affects the smooth part

of the plastic strain field to the right of the kink. Plastic
deformation along the right segment of the fault is much
more intense, and the width of plastic strain zone is much
wider, than that along the left segment. This behavior
corresponds to intensified inelastic deformation when rup-
ture propagates onto the fault segment that is less favorably
oriented for rupture in the given pre-stress field.
3.1.4. Reduction of High-Frequency Radiation
From the Kink
[33] The inelastic strain localization associated with a

fault kink discussed above has significant effects on seismic
radiation from the kink. Elastic analysis [Adda-Bedia and
Madariaga, 2008] has shown that seismic radiation from a
kink on an antiplane (Mode III) fault has first motion that
is a step function in particle velocity, which implies a
contribution to the high-frequency displacement-amplitude

spectrum that is proportional, asymptotically, to f�2.
Figure 8 shows x-component particle velocity waveforms
at Station S (see Figure 5) from six simulations. The cases
simulated include the kinked fault model with two element
sizes (to establish grid independence), and the planar fault
model for reference. For each of these three models, two
calculations are performed, with elastic and elastoplastic
off-fault responses, respectively. In each kinked-fault case,
we can examine departure of the wavefield time history
from the corresponding planar fault curve to identify the
radiated pulse from the kink. Using failure time of the kink
(i.e., rupture arrival time at x = 10km, from Figure 6),
velocity of the medium (Table 2), and the distance r = 1 km,
we identify the abrupt velocity jump that is present just
beyond 1.5 s in the elastodynamic kinked-fault model (but
absent in the straight-fault model) as the S-wave radiation
originating from the kink. This velocity jump in the elasto-
dynamic solution is as near to an instantaneous step as we
can resolve numerically, and is therefore consistent with
theoretical expectations from the analysis of Adda-Bedia
and Madariaga [2008] (i.e., presuming the Mode III
asymptotic behavior to hold for Mode II as well). Compar-
ison of waveforms from the two element sizes confirms that
the elastodynamic rupture problem is grid independent to
high precision, the only visible difference being that the
Dx = 2.5 m solution eliminates the small, high-frequency
overshoot in the Dx = 5 m solution at the time of the kink-
related velocity step.
[34] The elastoplastic solutions initially follow the elas-

todynamic solutions fairly closely, apart from accumulating
a small delay amounting to about 0.1 s by the time of the
kink S-wave arrival, as would be expected from rupture

Figure 7. Distribution of off-fault plastic strain magnitude due to rupture on a fault with a kink. Plastic
strain localizes into bands and lobes near the kink, and the solution of the localization is apparently
convergent when the element size is reduced.
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velocity difference shown in Figure 6. The kink S-wave
arrival itself is significantly different in the elastoplastic
case, however. In contrast to the essentially instantaneous
step seen in the elastodynamic case, the kink arrival in the
elastoplastic case is smoothed significantly, with a ramp-like
first motion followed by a roughly exponential decay of
slope. Since wavefield singularities propagate to the far
field, this change in the order of singularity signals an
increased decay rate in the far-field spectral asymptote from
f�2 to f�3, as regards the contribution of the kink to the
radiated displacement spectrum. Roughly speaking, the
spectral transition will be centered at frequency of the order
of the initial-ramp slope divided by the step amplitude, i.e.,
the inverse rise time. For the purpose of estimating some-
what more quantitatively the high-frequency reduction
associated with this smoothing of the kink S-wave, we note
that, as shown in Figure 9a, the simple function [1� exp(�t/
T)]H(t), with t measured from the arrival time of the kink
S wave, fits the initial part of the velocity jump quite
well, with T = 0.062 s. The spectrum of this function is

1/(2p f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pfð Þ2T2

q
), where f is frequency in Hz. The

spectrum of this function initially follows the f�1 slope of
the step function, but (with this value of T) shows a
transition in slope to f�2, with corner at about 2.7 Hz
(Figure 9b). Seismic radiation from the kink above this
frequency is significantly reduced by off-fault plastic yield-
ing, compared with the case in which off-fault response is

elastic. Note that the initial part of the S-wave pulse from
the kink also appears to be grid independent, as judged from
the agreement between Dx = 2.5 m and 5 m elastoplastic
solutions in Figure 8. Some difference between elastoplastic
solutions for the two element sizes becomes visible after
about 2 s (heavy and intermediate solid curves), and this
may be a manifestation of the small grid-dependent differ-
ences in plastic strain localization discussed above.
[35] Effects of off-fault plastic yielding on seismic

radiation from a fault kink vary spatially. Figure 10 shows
x-component particle velocities at six stations (see Figure 5)
that are 1 km away from the fault kink in six directions.
Station S has been examined in detail above. As shown in
Figure 10, seismic radiation from the kink arrives these
stations at around 1.5 s. The reduction of high-frequency
radiation from the kink due to off-fault plastic yielding can
also be clearly observed at stations SW and NW, indicated
by more gentle slopes of the velocity jumps in the elasto-
plastic calculation than those in the elastic calculation. Two
velocity jumps around 1.5 s at each of the two stations
correspond to P and S wave pulses, respectively, from the
kink. The second velocity jump (S wave pulse) at Station
NW has opposite polarities between the elastic and elasto-
plastic calculations. No obvious reduction is observed at
Station N. The radiation from the fault kink is not well
separated from other phases at Stations NE and SE. The
waveforms of these two stations from the elastoplastic
calculation are significantly different from those from the

Figure 8. Particle velocity time histories at Station S from six simulations: a kinked fault model with
two element sizes and a planar fault model. Two calculations with off-fault elastic (no yielding) and
elastoplastic (yielding) responses are performed on each model. Velocity jumps beyond 1.5 s from the
kinked fault model are caused by seismic radiation from the kink.
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elastic calculation after the arrival of the kink radiation
(around 1.5 s), indicating more complex effects of off-fault
plastic yielding on particle velocity at these stations.
Figure 11 shows x-component particle velocities at stations

in the S direction with different distances from the kink.
Reduction of high-frequency radiation from the kink is
observed at all these stations. Using the same procedure
as in Figure 9, we can quantify the reduction. We found that

Figure 9. (a) Fit of seismic radiation from a kink by the function [1 � exp(�t/T)]H(t). (b) Spectrum of
the fitting function and the ‘‘corner’’ frequency of reduction of high-frequency radiation.

Figure 10. Particle velocity time histories at six stations shown in Figure 5. Reduction of high-
frequency radiation from the fault kink by off-fault plastic yielding is obvious at stations S, SW, and NW
but not obvious at Station N. Particle velocity due to the kink radiation is significantly different from
elastic and elastoplastic calculations at stations NE and SE.
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there is no systematic variation in the ‘‘corner’’ frequency
with the distance away from the kink. Reduction of high-
frequency radiation is significant above several Hz at these
stations.

3.2. Variations in the Model

[36] To examine effects of model variations on the results,
we perform several simulations with one of the following
changes to the model in each simulation: (1) the length of
incoming rupture to the kink; (2) the kink angle (change in
fault strike); and (3) the sense of slip. Compared with the
model in Figure 5, we set the hypocenter to be at (5500, 0)
for (1) to allow a longer incoming rupture to the kink (4.5 km
rather than 3 km), change the kink angle to be 5� for (2), and
flip the sense of slip to be left-lateral for (3). Other model

parameters are same as the model (with Dx = 5 m)
considered in section 3.1. We only discuss the results from
elastoplastic calculations in this subsection.
[37] Figures 12 and 13 show the rupture time curves and

the distributions of plastic strain magnitude from the three
models, respectively. With a longer incoming rupture, the
plastic strain zone associated with the kink and the right
(post-bend) segment is wider (Figure 13a, compared with
Figure 7). Plastic strain localization associated with the
5� kink is much weaker than that with the 10� kink. For
example, the intensely-deformed band extending in the SEE
direction is much shorter (Figure 13b). Even with off-fault
plastic yielding, the 5� kink does not decrease rupture speed
significantly (Figure 12, dashed curve). When the sense of
slip becomes left-lateral, the right fault segment is more

Figure 11. Particle velocity time histories at 3 stations with different distances from the kink in the S
direction. Reduction of high-frequency radiation from the kink due to plastic yielding is observed at all
stations without systematic variation in the ‘‘corner’’ frequency.

Figure 12. Rupture times from the models of a longer incoming rupture, a 5� kink angle, and a left-
lateral fault with off-fault elastoplastic response.
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favorable for rupture in the uniform initial stress field than is
the left segment. The rupture becomes supershear at the
kink in both elastic (not shown) and elastoplastic (light solid
curve in Figure 12) calculations. As shown in Figure 13c,
the plastic strain occurs above the fault along this part of the
fault in the model. Interestingly, except for a small plastic
strain lobe, plastic strain is largely absent near the kink and
to its right, and is even absent from a small patch just to the
left of the kink. These gaps in plastic strain arise from a
large extensional increment in the normal stress induced
ahead of the rupture front on the right segment by left-lateral
faulting on the left segment. Because of the resulting drop in
frictional resistance to the right of the kink, the rupture
jumps ahead to break the right segment before rupture
reaches the kink from the left. The lowered frictional
resistance permits the right segment to rupture at low
shear-stress levels, permitting a supershear transition to
occur and suppressing yielding over an extended region to
the right of the kink. Meanwhile, slip immediately to the
right of the kink puts the kink region (and the small patch
just to its left) under compressive stress before the main
rupture advancing from the left can arrive to put the kink
region into extension. Thus the early-arriving compressive
stresses from the right-segment crack tip suppress yielding
that would otherwise be expected at the kink and just to its
left.

[38] Particle velocity waveforms at Station S from the
models of the longer incoming rupture and the 5� kink are
compared with those from the model of the section 3.1 in
Figure 14. At this station, the last velocity jump in the
waveforms results from the kink radiation. As discussed
before, the inverse rise time (initial slope of this jump
divided by the amplitude of the jump) indicates the transi-
tion frequency for reduction of the high-frequency kink
radiation by yielding. It can be seen that a longer incoming
rupture results in a longer rise time (heavy curve versus
light curve), suggesting a lower transition frequency that
corresponds to a wider plastic strain zone near the kink
(Figure 13a). This result qualitatively follows expectations
from similarity for a rate-independent material model: when
there is geometric similarity, all times should scale with the
fundamental length dimension, a role that in this case,
before fault end effects become significant, is played by
the rupture distance to the kink. The foregoing applies for
time histories at the same scaled distance, whereas the
comparison in Figure 14 is for fixed unscaled distance,
but we have already established that the kink-pulse rise time
remains approximately invariant with propagation distance.
The scaling of rise time is not exact, because we held fixed
the friction parameter D0 (had we scaled it with rupture
distance to the kink, the scaling would have been exact,
prior to the intervention of wave arrivals from the fault
ends).

Figure 13. The distribution of plastic strain magnitude from the models of a longer incoming rupture, a
5� kink angle, and a left-lateral fault.
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[39] We also see in Figure 14 that (given the same
incoming rupture length of 3 km) the 5� kink results in a
slightly reduced kink-pulse rise time relative to the 10� kink,
suggesting a slightly higher transition frequency, reflecting
the less pronounced plastic strain localization seen in
Figure 13b. Finally, as expected from the very minimal
plastic strain near the kink in Figure 13c, particle veloc-
ities from the left-lateral model (not shown) do not exhibit
any reduction in high-frequency radiation from the kink in
the elastoplastic calculation with respect to the elastic
calculation.

4. Localization of Off-Fault Plastic Strain
in Planar Fault Models

[40] In the above section, we observe localization of off-
fault plastic strain associated with a fault kink. In particular,
strong plastic strain bands develop to accommodate a
change in fault strike when rupture propagates onto a less
favorable fault segment. The solution of plastic strain
localization associated with a fault kink appears to be nearly
(though not perfectly) grid independent, as demonstrated by
solution comparisons with the element size reduced. This
solution is achieved with viscoplastic regularization in
which the relaxation time Tv (0.0017 s, see Table 2) is
chosen as the time for an S wave to propagate one element
(Dx = 5 m). When we reduce Tv, particularly with Tv = 0 s
(without viscoplastic regularization), we find that plastic

strain localization can occur spontaneously even along a
planar fault, under some initial stress conditions, while it
does not occur under other conditions. In this section, we
characterize the condition of plastic strain localization in
planar fault models and discuss challenges in numerically
simulating this phenomenon.

4.1. Determinant Factor: Relative Strength
of Off-Fault Material

[41] On the basis of a large number of numerical experi-
ments, we find that, for the class of model studied here
(Mohr-Coulomb material, slip-weakening friction), pre-
event proximity of the off-fault material to the failure level
determines whether the coseismic inelastic strain will be
smoothly distributed or will spontaneously localize into
shear bands. We propose a parameter T to characterize
how close the off-fault material is to the yield strength
before an earthquake. Parameter T is defined as

T ¼ t0max

t0coulomb
; ð14Þ

where tmax
0 and tcoulomb

0 are defined by equations (8b) and
(11), respectively, with the initial values of the stress
components used. T depends on the initial stress state and
the material properties c (cohesion) and f (the internal
friction angle). The larger the T value is, the closer the initial
state of the off-fault material is to failure.

Figure 14. Particle velocity time histories at Station S from models of a longer incoming rupture and a
5� kink angle, compared with that from the model with 3 km incoming rupture and 10� kink angle. The
inverse rise time of the last velocity jump in these curves indicates the transition frequency for reduction
of high-frequency kink radiation by yielding.
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[42] Figure 15 shows the plastic strain distribution at time
2.4 s from one set of numerical experiments on a 2D planar
fault model (right-lateral, in-plane) with different initial
shear stresses. The fault is 5 km long with two ends pinned
by a high frictional coefficient. Rupture starts at x = 1 km,
within a nucleation patch with a half length of 120 m.
Material properties (velocity, density, cohesion, and internal
friction) are same as those in Table 2. Numerical parameters
Dx = 2 m, a = 0.4, b = 0.1, and Tv = 0 s and the linear slip-
weakening friction law with D0 = 0.04 m are used in these
simulations. The initial stress conditions and fault frictional
coefficients in these calculations are listed in Table 3. We
keep the seismic ratio S (1.5) and the static stress drop
(10 MPa) same so that these simulations would give iden-
tical solutions for rupture propagation if off-fault response
were purely elastic. The seismic ratio S defines how close a
fault is to the failure level before an earthquake [e.g.,
Andrews, 1976; Das and Aki, 1977; Day, 1982]. In this
set of simulations, a lower initial shear stress corresponds to
a smaller T value as shown in Table 3. In the case of sxy

0 =
20 MPa (top) with T = 0.33, the distribution of plastic strain
is smooth, similar to that in the model of Andrews [2005]:
the magnitude of plastic strain is maximum adjacent to the
fault and decreases continuously away from the fault. In the
case of sxy

0 = 45 MPa (middle) with T = 0.75, plastic strain
distribution is smooth within the first 
 1.3 km rupture
distance, then small-scale, poor-separated plastic strain
bands appear within the next 
 0.7 km rupture distance,
and, finally, plastic strain localizes into discrete, well-
separated bands away from the fault with poor-separated
bands near the fault, and this pattern persists for the
remaining 
 2 km rupture distance to the right. The
magnitude of plastic strain is larger in these well-separated
bands than it is near the fault. Outside of these well-
separated bands, plastic strain is absent. Nevertheless, in
these two cases, rupture on the fault propagates continu-
ously to the ends of the fault, with a faster rupture speed (not
shown) in the case of sxy

0 = 20 MPa. Fault ends are
associated with large plastic strain. In the case of sxy

0 =
55 MPa (bottom) with T = 0.92, rupture on the fault dies out

quickly outside the artificial initiation patch, while plastic
deformation propagates along a favorable direction, result-
ing in two straight plastic strain bands emanating from the
two ends of the fault rupture. In this case, the fault static
friction coefficient (ms = 0.7) is very close to that of off-fault
material (0.75), and the fault plane is no longer the plane
nearest failure under the given initial stress field. The above
behavior show that larger values of T are associated with a
higher degree of off-fault plastic strain localization into
discrete shear bands.

4.2. Challenges in Numerically Modeling the Off-Fault
Plastic Strain Localization

[43] The poorly-separated plastic strain bands in the
above model with sxy

0 = 45 MPa impose a challenge to
numerical resolution. Numerical experiments show that it is
difficult to obtain a convergent solution for plastic strain
localization in the planar fault model. Figure 16 shows the
distribution of plastic strain magnitude for this model with
another two element sizes, one smaller (Dx = 1 m) and one
larger (4 m) than the 2 m used for the results shown in
Figure 15. From Figure 16 together with Figure 15 (middle),
it can be seen that the features of the plastic strain distribu-
tion continue to change as the element size is reduced. In the
case of 4 m, the banding feature only appears at the right
end of the model. The bands are not well-separated and the
smooth feature dominates elsewhere. With decrease in the
element size, the banding feature occurs progressively
earlier and becomes dominant, while the zone with smooth
plastic strain progressively shrinks. The transitions from the
smooth feature, to the poor-separated bands, and further to

Figure 15. The distribution of plastic strain magnitude under three different initial shear stress
conditions in a planar fault model. Higher initial shear stress promotes plastic strain localization.

Table 3. Initial Stresses, Frictional Coefficients, and Parameter T

for Simulation in Section 4.1

sxx
0 (MPa) syy

0 (MPa) sxy
0 (MPa) ms md T

�100 �100 20 0.35 0.1 0.33
�100 �100 45 0.6 0.35 0.75
�100 �100 55 0.7 0.45 0.92
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the well-separated bands, are observed in both the 2 m and
1 m cases. However, for the well-separated bands, we do not
see a trend toward strict convergence: the location and
separation (e.g., perpendicular distance) between adjacent
bands are different between the two cases. In these calcu-
lations, we adjust the dimensionless numerical parameter
b (keeping the dimensional damping q fixed) to ensure that
the same amount of damping is used with different element
sizes.
[44] The time-dependent relaxation of stress adjustment

(viscoplasticity) does not in general prevent plastic strain
localization from occurring, though it delays the onset of
plastic strain bands. Figure 17 shows the result on a longer
fault (10 km) with Tv = 0.0006 s. Other parameters are the
same as those in the above model with Dx = 2 m. Plastic
strain localization occurs after rupture propagates more than
5 km and poor-separated bands have not been smoothed out
by using this numerical regularization.

5. Discussion

5.1. Conditions and Significance of Off-Fault Plastic
Strain Localization

[45] Previous theoretical studies on quasi-static deforma-
tion [e.g., Rudnicki and Rice, 1975; Rice, 1976] suggest that
a pressure-dependent elastoplastic constitutive description,
such as the Mohr-Coulomb yielding criterion, can be prone
to localization of deformation. They introduced a critical
hardening, hcr, above which localization cannot occur. A

recent dynamic analysis [Templeton and Rice, 2008], using
a similar constitutive description (the Drucker-Prager yield
criteria), also shows features of dynamic plastic strain
localization under some conditions. Whether or not plastic
strain localization must occur when a material has a hard-
ening value smaller than hcr is not clear from these previous
studies. With the stress condition and material properties in
section 4.1, hcr is positive, (whereas the models have a
hardening value of 0). Given the grid resolutions we can
achieve at present, plastic strain localization does not
always occur in dynamic analyses even when the material
hardening is smaller than hcr. Rather, the parameter T
proposed in the above section controls whether or not
localization occurs, with a large value of T promoting
localization. Under the condition of high T values on a
planar fault model, the spontaneous-localization of plastic
strain appears grid-dependent in its structural details, which
may result from inherently scale-independent interactions
among incipient shear bands that are cut off at the smallest
scale accessible the numerical mesh. Exploration of numer-
ical schemes that could prevent grid-dependent localization
will be future work.
[46] Discrete, well-separated plastic strain bands in the

models may represent well-developed secondary faulting,
while smoothly distributed plastic strain may correspond to
distributed fractures within a volume. In addition, our
models also suggest that localization of off-fault plastic
strain can strongly perturb rupture propagation on the main
fault. In the end-member case in which the static strength of

Figure 16. The distribution of plastic strain magnitude in a planar fault model with two different
element sizes. Features of plastic strain localization keep changing with the element size, imposing a
challenging in numerically simulating the localization.

Figure 17. The distribution of plastic strain magnitude in a longer planar fault model with
viscoplasticity regularization. This regularization can only delay onset of plastic strain bands without
removing small-scale, poor-separated features.
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the fault is close to the strength of the surrounding material,
for example, off-fault strain bands develop while rupture
on the pre-existing fault dies out (e.g., in the model of
sxy
0 = 55 MPa in section 4.1). Thus different damage

distributions in the field may give us some clues about
relative strength between a main fault and the surrounding
host rocks: if there is significant secondary faulting, it may
indicate the strength of the main fault is close to that of the
host rocks; more diffuse damage may be characteristic when
the strength of the main fault is significantly lower than that
of the host rocks.

5.2. Effects of Off-Fault Plastic Yielding on Residual
Stresses at a Fault Kink

[47] In examining long-term effects of non-planar fault
geometry on repeated seismic ruptures, Nielsen and Knopoff
[1998] and Duan and Oglesby [2005] introduced a visco-
elastic model to avoid pathological stresses at fault kinks
that would be accumulated over repeated ruptures. This
viscoelastic model may represent aseismic stress relaxation
at fault kinks. However, nonelastic deformation near a fault
kink during dynamic ruptures is absent in these previous
studies. Although aseismic stress relaxation may occur
during the inter-seismic period and play an important role
in limiting stress buildup at fault irregularities, we expect
that off-fault nonelastic deformation during dynamic ruptures
can also have large effects on accumulated stresses at these
locations. Figure 18 shows the fault-normal stress near the
fault kink before and after the seismic rupture from calcu-

lations in section 3.1, comparing results with off-fault
elastic and elastoplastic response, respectively. The normal
stress before the seismic event is same for the two calcu-
lations. After the seismic rupture, the normal stress from the
two calculations is different near the kink. The very large
compressive normal stress to the right side of the kink in the
elastic calculation is significantly reduced (to about one
third) because of yielding in the elastoplastic calculation. In
these calculations, we allow the fault to open when the fault
normal stress becomes tensile, and fault opening results in
zero fault-normal stress. This occurs to the left side of the
kink in both calculations. However, plastic flow significantly
reduces the width of this fault opening zone. Thus coseismic
nonelastic deformation near fault irregularities has large
effects on residual stresses at these locations and needs to
be accounted for in more realistic multiple earthquake cycle
models.

5.3. Contribution of Off-Fault Plastic Yielding
to Cohesive Zone Development and Equivalence
Between Time-Weakening and Slip-Weakening
Friction Laws

[48] Resolving the cohesive zone at the rupture front is
crucial for capturing peak slip rates and rupture propagation
speeds. The cohesive zone is the portion of the fault plane
behind the rupture front where the frictional coefficient
decreases from its static value to its dynamic value and slip
s satisfies 0 < s < D0 [e.g., Andrews, 1976; Day et al., 2005].
In elastodynamic analyses (where off-fault response is

Figure 18. Fault normal stress near a kink before and after a seismic rupture. Off-fault plastic yielding
significantly reduces magnitude of the stress to the right of the kink and width of fault opening zone to
the left of the kink.
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assumed to be purely elastic), a linear slip-weakening
friction law with a constant critical slip distance D0 results
in shrinking of the cohesive zone width with increasing
rupture velocity vr, the width approaching zero as terminal
velocity (the Rayleigh velocity in the plane strain case) is
approached. Rupture velocity in turn grows with rupture
propagation distance (assuming conditions of uniform stress
drop and 2D geometry), so the cohesive-zone width con-
tracts with propagation distance in the elastodynamic case.
A linear time-weakening friction law can avoid this narrow-
ing of the cohesive zone with propagation distance, and
results in an effective D0 that is proportional to the square
root of rupture propagation distance [Andrews, 2004; Day et
al., 2005].
[49] With off-fault plastic yielding, however, the cohesive

zone development may be quite different than in the
elastodynamic case. Day et al. [2005] speculated that plastic
yielding might thereby re-set the minimum scale for numer-
ical resolution, and we explore that idea here. Figure 19
compares cohesive zone development and rupture propaga-
tion between two calculations on the model by Andrews
[2005] (see section 2.4). One calculation uses the time-
weakening friction law with Tc = 0.0035 s. The other
calculation uses the linear slip-weakening law with D0 of
0.01 m. Other parameters, such as Tv of 0.00067 s and the
element size of 2 m, are same between the two calculations.
It can be seen from Figure 19a that the cohesive zone width
in the slip-weakening model does not shrink appreciably
with rupture propagation distance when there is interaction
with off-fault plastic yielding. Rather, it tends to become a
constant. The cohesive zone width in the case of the time-
weakening law with Tc = 0.0035 s also stabilizes quickly
outside of the nucleation patch. From Figure 19b, one can
see clearly that the slip-weakening model with D0 = 0.01 m
gives almost the same solution for rupture propagation on
the fault as the time-weakening model. Thus these two
friction laws become essentially equivalent when off-fault
plastic yielding is included in the models.
[50] This equivalency arises because off-fault yielding

limits the rupture velocity, stopping the scale contraction
at the rupture front (Figure 19b shows that rupture velocity

quickly stabilizes at a value below terminal velocity). We
can also understand the stabilization of the cohesive scale
more directly by the following argument. When there is a
strength limit in the material adjacent to the fault, the very
high slip velocities present at the rupture front in elastody-
namic models are suppressed, and a nearly constant slip rate
develops as yielding occurs at and just behind the rupture
front. The constant slip rate results in a nearly constant
effective D0 as a function of rupture propagation distance in
the time-weakening model (and a constant effective Tc in
the slip-weakening model). Put differently, if (in the slip-
weakening context) most of the critical slip D0 occurs while
slip velocity is capped at some value _smax because of
yielding, then a new minimum cohesive scale length of
order D0Vr/_smax is introduced, and this scale puts a limit on
cohesive-zone contraction.
[51] Numerical resolution of the cohesive width by several

grid elements is essential to solution accuracy of rupture
propagation problems. In the case of D0 = 0.01 m, the
cohesive zone width is about 6 m (3 elements). Although
it is narrower than that from Tc = 0.0035 s (about 9 m,
4.5 elements), the good agreement between these two
calculations seen in Figure 19b suggests that both models
well resolve the cohesive zone and the solution has a good
accuracy. This inference is also consistent with the finding
in the study by Day et al. [2005], using a similar numerical
method, that 3-element resolution of the cohesive zone was
adequate to capture rupture propagation speed to an accuracy
of about 1%. In comparison, if yielding were suppressed,
the same element size of 2 m would require a D0 value of
about 0.06 m to well resolve the cohesive zone (i.e., 3
elements within the zone) at a rupture distance of 2 km
based on an elastodynamic analysis [Andrews, 2004].

6. Conclusions

[52] Numerical simulations for a Mohr-Coulomb material
predict substantial inelastic deformation in association with
rupture along both straight and kinked faults. In the straight-
fault case, deformation may be smoothly distributed or may
spontaneously localize into discrete shear bands, depending

Figure 19. (a) Cohesive zone width and (b) rupture time along a planar fault from two calculations with
off-fault plastic yielding: one uses a time-weakening friction law, the other uses a slip-weakening friction
law. The legend in Figure 19b also applies to Figure 19a.
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upon the initial stress state and the material strength
parameters (i.e., cohesion and internal friction). For uniform
initial stress, the determinative parameter controlling spon-
taneous localization is the ratio tmax/tcoulomb (defined by
equations (8b) and (11)). If these distinct damage modes
(smoothly distributed versus localized) arising in idealized
models have approximate counterparts in real faulting, then
field patterns of damage and secondary faulting may pro-
vide information about relative strength between fault
surface and host rock, with, e.g., a more localized damage
mode being inductive of bulk and frictional strength that are
relatively close in value.
[53] In the case of a kinked-fault, extensive inelastic

deformation concentrates near a restraining bend, principally
on the side of the fault associated with rupture-front
extensional strains, the deformation taking the form of a
few distinct lobes and shear bands. The spatial extent and
intensity of the deformation both increase with increasing
restraining-bend angle, and become relatively much smaller
in the case of a releasing-bend orientation. For some
azimuths, the inelastic strain reduces the high-frequency
seismic radiation originating from the kink, with the far-
field spectrum of this phase diminishing by an extra factor
of f�1 (relative to the corresponding perfectly elastic model),
above a frequency of several Hz. The coseismic inelastic
strain also greatly reduces the residual stress concentrations
left behind after rupture through a fault bend (e.g., residual
normal stress reduction of a factor of 3 in a typical 10�
restraining bend case), with potentially significant con-
sequences for models of fault-system evolution through
multiple-earthquake cycles.
[54] Rupture simulations for the Mohr-Coulomb material

model raise some computational issues not present in
corresponding perfectly elastic problems. Our comparison
with published results by Andrews [2005] suggests that
numerical solutions for those rupture models with smooth
strain distributions can be reproduced to high precision
when done with different numerical methods and different
(but sufficiently refined) grids. When localized shear bands
are induced at an isolated, discrete concentrator like a fault
kink, the essential features of the solution appear to be grid
independent, but some grid dependence persists in the
details of the final strain distribution. Finally, in the case
where multiple shear bands develop spontaneously, the
bands appear to interact strongly at the smallest spatial
scales accessible to the grid, and we therefore do not obtain
strict numerical convergence as the grid is refined. On the
other hand, plastic yielding suppresses the scale contraction
of the fault cohesive zone that otherwise occurs in perfectly
elastic rupture propagation models, thereby improving the
prospects for numerical resolution of the short-scale lengths
induced by frictional breakdown.
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